ПОМОГИТЕ СРОЧНО основа пирамиды правильный треугольник. Одна бична грань пирамиды...

0 голосов
54 просмотров

ПОМОГИТЕ СРОЧНО
основа пирамиды правильный треугольник. Одна бична грань пирамиды перпендикулярна к основа, а две другие наклонены к ней под углом бета. Высота равна H, найти площу боковой поверхности


Геометрия (15 баллов) | 54 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть имеем пирамиду SАВС. Грань АSВ вертикальна, высота грани и пирамиды Н - отрезок SО.
СО - высота h основания, сторона основания - а.
SД - высота боковой грани, ОД - перпендикуляр к стороне ВС основания.

Высота боковой грани SД = H / sin β.
Перпендикуляр ОД = Н / tg β.
Угол ОСВ = 30°, поэтому h = OC = 2ОД = 2Н / tg β.
Сторона основания а = h / cos 30° = 2H /( tg β*(√3/2)) = 4H /(tg β√3).
Площадь Sбок боковой поверхности заданной пирамиды равна:
Sбок = 2*(1/2)а*SД + (1/2)а*Н = аН/sin β + aH/2 = aH((1/sinβ) + (1/2)) =
         = (4H²/(tg β√3))((1/sinβ) + (1/2)).

(309k баллов)