1)высота правильной четырёхугольной призмы равна 2 корень из 6 ,а диагональ призмы...

0 голосов
90 просмотров

1)высота правильной четырёхугольной призмы равна 2 корень из 6 ,а диагональ призмы наклонена к плоскости основания под углом 30 градусов . найти площадь полной поверхности призмы
2)боковые грани правильной четырёхугольной пирамиды наклонены к плоскости основания под углом 60 градусов . площадь основания равна 16 м^2 . найти площадь боковой поверхности пирамиды


Геометрия (15 баллов) | 90 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Если высота Н правильной четырёхугольной призмы равна 2√6 ,а диагональ призмы наклонена к плоскости основания под углом 30°, то диагональ d основания равна:
d = H / tg 30° = 2√6 / (1/√3) = 2√18 = 6√2.
Сторона а основания равна: a = d*cos 45° = 6√2*(√2/2) = 6.
So =a² = 6² = 36.
Sбок = РН = 4*6*2√6 = 48√6 кв.ед.

2) Если площадь основания равна 16 м², то сторона а основания равна:
а = √16 = 4 м.
Высота Н пирамиды равна:
Н = (а/2)*tg 60° = 2√3 м.
Находим апофему А:
А = (а/2) / cos 60° = 2/(1/2) = 4 м.
Периметр Р основания равен: Р = 4а = 4*4 = 16 м.
Sбок = (1/2)РА = (1/2)16*4 = 32 м².

(309k баллов)