Поделим множество всех действительных чисел на два подмножества. Первое состоит из чисел вида где n и m - целые. Второе состоит из всех остальных. Ясно, что оба подмножества непусты, так как первое счетно, а множество действительных чисел несчетно, а если из несчетного множества убрать счетное подмножество, то останется множество той же мощности. Пусть функция во всех точках первого множества принимает какое-то одно значение, скажем 1, а во всех точках второго множества - другое значение, скажем 0. Добавление к числам первого множества любого количества единиц и любого количества корней из 2 не выводит из него. То же справедливо для чисел второго множества, так как если в результате добавления к x числа вида получится число вида , то x равен разности этих чисел, то есть само есть комбинация 1 и корня из 2 с целыми коэффициентами. Поэтому построенная функция удовлетворяет требуемому условию.