Основания трапеции равны 10 и 20 см. Сумма площадей треугольников, образованных при...

0 голосов
206 просмотров

Основания трапеции равны 10 и 20 см. Сумма площадей треугольников, образованных при пересечении диагоналей трапеции и прилежащих к основаниям углов равна 45 см2. Найти площади этих треугольников.


Геометрия (89 баллов) | 206 просмотров
Дано ответов: 2
0 голосов

Рассм.эти треугол-ки:АОД и ВОС(они подобные по трем углам).Найдем площадь каждого треу-ка: Sаод=1/2*АД*ОН=1/2*20*ОН;Sвос=1/2*ВС*ОК=1/2*10*ОК;

(1/2*20*ОН)+(1/2*10*ОК)=45;

20*ОН +10*ОК=90;

т.к. треуг-ки подобны,то ОК/ОН=10/20, ОК=ОН*10/20;

20*ОН+10*ОН*10/20=90;

ОН(20+100/20)=90;

ОН=90*20/300;

ОН=3,6.

ОК=1,8.

Sаод=1/2*20*3,6= 36, Sвос=1/2*10*1,8=9.

(76 баллов)
0 голосов

Треугольники прилежащие к основанию подобны и отношение их площадей равно квадрату коэффициента подобия (АД/BC)квадрат=(20/10)квадрат=4. То есть S1/S2=4, или S1=4*S2. По условию S1+S2=45. Или 4*S2+S2=45. Отсюда S2=9, S1=4*S2=36.

(3.7k баллов)