А₍n₋₄) ²= (n-4)!/(n-4-2)! = (n-4)!/(n-6)! =(n-5)(n-4) = n² -9n +20
A(n-₃) ² = (n-3)!/(n-3-2)!= (n-3)!/(n-5)! = (n-4)(n-3) = n² - 7n +12
A₍n₋₂)² = (n-2)!/(n-2-2)! = (n-2)!/(n-4)! = (n-3)(n-2) = n² -5n +6
C₍n₊₄) ⁿ⁺¹ = (n+4)!/(n+1)! 3! = (n+2)(n+3)(n+4)/6
С₍n₊₃) ⁿ = (n +3)!/n!3! = (n+1)(n+2)(n+3)/6