Найдите наименьшее значение функции на [1;4] y=x^3-3x^2+2 Помогите решить
Найдём производную функции: Найдём экстремумы функции: 0 не входит в заданный промежуток. Значит, наименьшее значение функция будет принимать в точке с абциссой 2 (2 - точка минимума). Чтобы убедиться в том, что 2 - точка минимума, найдём промежутки монотонности функции: Функция возрастает на (∞; 0] и [2;+∞) и убывает на [0; 2]. Как известно, что та точка, в которой убывание сменяется возрастанием, называется точкой минимума функции. Ответ: -2.