ычислить: а) |5|-2; б) |-12| : 6; в) |-24| + |13|; г) |65|-|-45|.
Решение. а) |5|-2=5-2=3;
б) |-12| : 6=12 : 6=2;
в) |-24|+|13|=24+13=37;
г) |65|-|-45|=65-45=20.
2. Решить уравнение: а) |m|+4=10; б) 6-|x|=2.
Решение.
а) |m|+4=10;
|m|=10-4; из суммы вычли известное слагаемое;
|m|=6. Так как |-6|=6 и |6|=6, то m=-6 или m=6.
Ответ: -6; 6.
б) 6-|x|=2.
|x|=6-2;
|x|=4, отсюда х=-4 или х=4.
Ответ: -4; 4.
3. Записать перечислением элементов множество целых чисел А, модуль которых меньше числа 5.
Решение. По определению модуля числа 5 искомые числа должны отстоять от начала отсчета как вправо, так и влево на расстояние, меньшее пяти единичных отрезков. В этом промежутке (показан штриховкой на рисунке) бесконечно много чисел, но нам нужно выбрать из них лишь все целые числа. Берем числа: -4, -3, -2, -1, 0, 1, 2, 3, 4. Числа -5 и 5 не подходят по условию.
Ответ: множество А={-4, -3, -2, -1, 0, 1, 2, 3, 4}.