❗❗❗ПОМОГИТЕ ПОЖАЛУЙСТА ❗❗❗ЗАРАНЕЕ ВСЕМ ОГРОМНОЕ СПАСИБО❤

0 голосов
55 просмотров

❗❗❗ПОМОГИТЕ ПОЖАЛУЙСТА ❗❗❗
ЗАРАНЕЕ ВСЕМ ОГРОМНОЕ СПАСИБО❤


image

Геометрия (53 баллов) | 55 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Трапеция, вписанная в окружность, равнобедренная.  проведем диагональ FM. Она делит трапецию на два треугольника FKM и FME. Окружность при этом описана вокруг обоих этих треугольников. Поэтому достаточно найти радиус окружности, описанной около, например, треугольника FME. Опустим высоту МН. Она делит большее основание трапеции на два отрезка, больший из которых равен полусумме, а меньший - полуразности оснований трапеции (свойство).
Тогда НЕ=(14-2):2=6 и по Пифагору МН=√(МЕ²-НЕ²) или
МН=√(100-36)=8. FM=√(МH²+MН²) или FM=√(64+64)=8√2.
Площадь треугольника FME равна S=(1/2)*MH*FE или S=(1/2)*8*14=56.
Радиус  окружности, описанной около треугольника, равен отношению произведения сторон треугольника к его учетверенной площади.
В нашем случае: R=FE*FM*ME/S или (14*8√2*10)/(4*56)=5√2.
Ответ:МО=5√2 или ≈7,071.


image
(117k баллов)
0

спасибо большое❤