26. Биссектриса угла треугольника пересекает сторону под углом 850 и биссектрису одного...

0 голосов
24 просмотров

26. Биссектриса угла треугольника пересекает сторону под углом 850 и биссектрису одного из углов под углом в 540. Найти величины углов треугольника. 27.В треугольнике АВС С=900, CD - высота треугольника, ВС = 2 BD. Докажите, что AD=3DB


Геометрия (44 баллов) | 24 просмотров
Дан 1 ответ
0 голосов

26) В треугольнике ABC: 
BD и СЕ - биссектрисы, пересекающиеся в точке O
Угол COD = 54° 
Угол BDC = 85°, тогда
Угол OCD = 180 - 85 - 54 = 41 (°), тогда 
Угол BCD = 41 * 2 = 82 (°), т.к.  биссектриса CE делит угол BCD пополам
Угол CBD = 180 - 85 - 82 = 13 (°), тогда
Угол ABC = 13* 2 = 26 (°) т.к. биссектриса BD делит угол ABC пополам
Угол BAC = 180 - 82 - 26 = 72 (°)

Ответ: углы треугольника ABC равны 72°, 26°, 82°
-----------------------------------------------------------------------------------------
27) Пусть ABC - прямоугольный треугольник с гипотенузой AB, катетами BC u AC. CD - высота, опещунная на гипотенузу AB.
В прямоугольном треугольнике BCD:
BC - гипотенуза, CD u BD - катеты, причем гипотенуза ВС в 2 раза больше катета BD ⇒ угол BCD = 30°, т.к. катет, противолежащий углу 30° равен половине гипотенузы. ⇒ угол CBD = 180 - 90 - 30 = 60° ⇒
⇒ угол BAC = 180 - 90 - 60 = 30°

В прямоугольном треугольнике ABC:
AB - гипотенуза, BC и AC  - катеты, причем катет BC противолежит углу 30° и следовательно равен половине гипотенузы. 
BC = AB/2
ВС = 2BD
2BD = AB/2
AB = 4BD
AB = AD + BD
AD + BD = 4 BD
AD = 3 BD
Что и требовалось доказать

(9.7k баллов)