|x^2-4x+3|+|x^2-5x+6|=1

0 голосов
99 просмотров

|x^2-4x+3|+|x^2-5x+6|=1


Алгебра (434 баллов) | 99 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Стандартный способ решения таких уравнений состоит   в рассмотрении нескольких промежутков, на каждом из которых модули раскрываются тем или иным образом. Надеюсь кто-нибудь такое решение приведет. Мне же здесь хотелось рассказать, как иногда этот процесс можно упростить. Имеем:

|(x-3)(x-1)|+|(x-3)(x-2)|=1;\ |x-3|(|x-1|+|x-2|)=1.

Поскольку |x-a|- это расстояние от x до a, |x-1|+|x-2| это сумма расстояний от x до 1 и 2, а поскольку расстояние между 1 и 2 равно 1, эта сумма больше или равна 1. Отсюда следует, что |x-3| меньше или равен 1 (иначе произведение скобок в левой части стало бы больше 1). А раз |x-3| - это расстояние от x до 3, x обязан принадлежать отрезку [2;4]. Значит, x больше или равен 2, а тогда |x-2|=x-2; |x-1|=x-1. 

Уравнение превращается в

|x-3|(x-1+x-2)=1; |x-3|(2x-3)=1. Можно рассматривать случаи x справа от 3 и x слева от 3, но можно обойтись без этого. Вспомним, что у нас x больше или равен 2, а отсюда
2x-3>0. Разделив в уме уравнение на (2x-3), получаем уравнение вида  |u|=v, причем известно, что v>0. Из него следует, что расстояние от u до 0 равно v, следовательно, u=v или u=-v. Вернув (2x-3) на место, получаем, что наше уравнение равносильно совокупности из двух уравнений

\left [ {{(x-3)(2x-3)=1} \atop {(x-3)(2x-3)=-1}} \right. \Leftrightarrow
 \left [ {{2x^2-9x+8=0} \atop {2x^2-9x+10=0}} \right.

Решая эти два квадратных уравнения, получаем корни 

\frac{9\pm\sqrt{17}}{4};\ 2;\ \frac{5}{2}.

Отбрасывая корень, меньший 2, пишем ответ

\frac{9+\sqrt{17}}{4};\ 2;\ \frac{5}{2}

Кстати, эта задача (как и многие другие) есть в замечательной книжке, которую я очень люблю. К сожалению, она в последнее время (после наступления эры ЕГЭ) не переиздается. Называется она Алгебраический тренажер, ее авторы Мерзляк, Полонский, Якир.

(64.0k баллов)
0 голосов

X^2-4x+3+x^2-5x+6x=1
2x^2-9x+9=1
2x^2-9x+9-1=0
2x^2-9x+8=0
x=-(-9)=+-корень (-9)^2-4*2*8/2*2
x=9+- корень 81-64/4
x=9+-корень 17/4
x=9+ корень 17/4
x=9- корень 17/4
x1=9- корень 17/4
x2=9+ корень 17/4

(29 баллов)
0

А куда Вы дели модули?