Если в каждой точке интеграла f(x)>0,то функция ** этом интеграле?

0 голосов
56 просмотров

Если в каждой точке интеграла f(x)>0,то функция на этом интеграле?


Математика (12 баллов) | 56 просмотров
Дан 1 ответ
0 голосов
Функция F(x) называется первообразной для функции f(x) на интервале X=(a,b) (конечном или бесконечном), если в каждой точке этого интервала f(x) является производной для F(x), т.е. 
Из этого определения следует, что задача нахождения первообразной обратна задаче дифференцирования: по заданной функции f(x ) требуется найти функцию F(x), производная которой равна f(x). 
Первообразная определена неоднозначно: для функции 
 первообразными будут и функция arctg x, и функция arctg x-10: . Для того, чтобы описать все множество первообразных функции f(x), рассмотримСвойства первообразной.Если функция F(x) - первообразная для функции f(x) на интервале X, то функция f(x) + C, где C - произвольная постоянная, тоже будет первообразной для f(x) на этом интервале. (Док-во: ).Если функция F(x) - некоторая первообразная для функции f(x) на интервале X=(a,b), то любая другая первообразная F1(x) может быть представлена в виде F1(x) = F(x) + C, где C - постоянная на X функция.
Док-во. Так как функции 
F(x) и F1(x) - первообразные для f(x), то (по теор.8.1. условие постоянства дифференцируемой функции на интервале) Для любой первообразной F(x) выполняется равенство dF(x) = f(x) dx.
Из этих свойств следует, что если F(x) - некоторая первообразная функции f(x) на интервале X, то всё множество первообразных функции f(x) (т.е. функций, имеющих производную f(x) и дифференциал f(x) dx) на этом интервале описывается выражением F(x) + C, где C - произвольная постоянная.
(14 баллов)