В прямоугольном треугольнике ABC(C=90°) ** гипотенузу AB опущена высота...

0 голосов
57 просмотров

В прямоугольном треугольнике ABC(C=90°) на гипотенузу AB опущена высота CD.DCA=60°.Найдите градусную меру угла CBA.


Геометрия (164 баллов) | 57 просмотров
Дан 1 ответ
0 голосов

Рассмотрим треугольник АВС. АВС – прямоугольный треугольник, угол С = 90 градусов – прямой, угол СВА (В) = 30 градусов, АВ =12 см – гипотенуза. В треугольнике АВС найдем, используя теорему Пифагора, катет ВС. Для этого сначала нужно найти катет АС. Катет АС равен АВ/2, так как АС лежит против угла в 30 градусов, а из свойств прямоугольного треугольника известно, что против угла в 30 градусов лежит катет, который равен половине гипотенузы: АС = АВ/2 = 12/2 = 6 (см). Найдем катет ВС: ВС = √( АВ^2 – АС^2) = √(12^2 – 6^2) = √(144-36) = √108 (см). 2. Рассмотрим треугольник BCD. BCD - прямоугольный треугольник (CD – высота, поэтому образует с АВ прямой угол). В прямоугольном треугольнике BCD угол BDC = 90 градусов, угол DBC = 30 градусов по условию, ВС = √108 см – гипотенуза, так как лежит против прямого угла BDC. Нам нужно найти катет BD. Для начала найдем катет DC. DC лежит против угла в 30 градусов, поэтому равен половине гипотенузы: DC = ВС/2 = √108/2 (см). Теперь по теореме Пифагора найдем катет BD: BD = √(BC^2 – DC^2) = √((√108)^2 – (√108/2)^2) = √(108 – 108/4) = √(108 – 27) = √81 = 9 (см). Ответ: BD = 9 см.

(46 баллов)