Пусть первый член прогрессии равен а. Тогда второй член прогрессии равен в*а, где в - знаменатель прогрессии, тогда третий член прогрессии равен в^2 *а. После увеличения второго члена на 8 имеем арифметическую прогрессию а;(в*а+8);в^2 *а. А это значит, что (в*а+8) - а = в^2 *а - (в*а+8); или в^2 *а - (в*а+8) - (в*а+8) + а =0; в^2 *а - 2в*а - 16 + а =0; После увеличения третьего члена прогрессии он примет вид в^2 *а +64 и прогрессия станет геометрической, а это значит, что (в*а+8)/a = (в^2 *а +64)/(ва+8); (в*а+8)^2 = a* (в^2 *а +64); в*а - 4a +4 = 0, откуда а = 4/(4 - в). Подставим это значение в первое уравнение: 4 в^2 +8в - 60 = 0; в^2 +2в - 15 = 0; решив квадратное уравнение стандартным образом, найдем два значения в и возьмем положительное значение в = 3. Тогда члены начальной прогрессии равны:а1 = 4, а2 = 12, а3 = 36. Ответ: а1 = 4, а2 = 12, а3 = 36