Решите срочно пожалуйста с РИСУНКОМ! Данный отрезок имеет концы ** двух перпендикулярные...

0 голосов
133 просмотров

Решите срочно пожалуйста с РИСУНКОМ!
Данный отрезок имеет концы на двух перпендикулярные плоскостях и составляет с одной из них угол в 30°,а с другой 45°.Длина этого отрезка равна a.Найти расстояние между основаниями перпендикулярна,опущенных из концов отрезка на линию пересечения плоскостей.


Геометрия (1.5k баллов) | 133 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.
Опустим перпендикуляры AD и BC из концов отрезка АВ на линию пересечения данных нам взаимно перпендикулярных плоскостей.
Угол между прямой АВ и плоскостью b - это угол между прямыми АВ и AC.
В прямоугольном треугольнике АСB с прямым углом С (по теореме о трех перпендикулярах) катет ВС, лежащий против угла 30°, равен половине гипотенузы АВ, то есть ВС=0,5*АВ или ВС=а/2.
Угол между прямой АВ и плоскостью с - это угол между прямыми АВ и DB.
В прямоугольном треугольнике АDB с прямым углом D острые углы равны по 45°, то есть AD=DB , следовательно катет 2DB²=a², отсюда DB=а√2/2.
В прямоугольном треугольнике DCB с прямым углом C по Пифагору имеем:
DC=√(DB²-BC²) или DC=√(2а²/4-а²/4)=а/2.
Ответ: искомое расстояние равно а/2.
Угол между прямой АВ и плоскостью с - это угол между прямыми АВ и DB.
В прямоугольном треугольнике АDB с прямым углом D острые углы равны по 45°, то есть AD=DB , следовательно катет 2DB²=a², отсюда DB=а√2/2.
В прямоугольном треугольнике DCB с прямым углом C по Пифагору имеем:
DC=√(DB²-BC²) или DC=√(2а²/4-а²/4)=а/2.
Ответ: искомое расстояние равно а/2.


image
(117k баллов)