1) cos(7X)-cos(X)-sin(4X)=0
-Sin4xCos3x - Sin4x = 0
-Sin4x(Cos3x +1) = 0
Sin4x = 0 Cos3x +1 = 0
4x = πn, n ∈ Z Cos3x = -1
x = πn/4, n ∈Z 3x = π + πk , k ∈ Z
x = π/3 + πk/3, k ∈Z
2) sin^2(X)+6cos^2(X)+7sin(X)cos(X)=0 | : Cos²x≠0
tg²x + 6 +7tgx = 0
tg²x + 7tgx +6 = 0
по т. виета корни -1 и -6
tgx = -1 tgx = -6
x = -π/4 + πk , k ∈ Z x = arctg(-6) + πn, n ∈Z
3) 4sin^2(X)+5sin(X)cos(X)-cos^2(X)=2*1
4sin^2(X)+5sin(X)cos(X)-cos^2(X)=2*(sin²x + cos²x)
4Sin²x + 5SinxCosx -Cos²x - 2Sin²x - 2Cos²x = 0
2Sin²x +5sinxCosx -3Cos²x = 0 | : Cos²x≠0
2tg²x +5tgx -3 = 0
tgx = 1/2 tgx = -3
x = arctg(1/2) + πk, k ∈Z x = -arctg3 + πn , n ∈ Z
sin(2X)+корень из 2* sin(x-п/4)=1