2cos^2пx+sin п x-1=0
2(1-sin²πx)+sinπx-1=0 -2sin²πx +sinπx+1=0 z=sinπx -2z²+z+1=0 2z²-z-1=0 D=1+8=9 √D=3 z1=1/4[1+3]=1 z2=1/4[1-3]=-1/2 sinπx=1 πx=π/2+2πk x=1/2+2k k∈Z sinπx=-1/2 πx=(-1)ⁿarcsin(-1/2)+πk=(-1)ⁿ⁺¹π/6+πk x=(-1)ⁿ⁺¹/6+k k∈Z