Напишите уравнение касательной к графику функции у= 1/2sin2x-2x в точке с абциссой x0 =...

0 голосов
35 просмотров

Напишите уравнение касательной к графику функции у= 1/2sin2x-2x в точке с абциссой x0 = π/2


Алгебра (98 баллов) | 35 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

  Уравнение касательной к кривой у=f(x)  в точке x₀:
y-f(x₀)=f`(x₀)·(x-x₀)

f(x₀)=f(π/2)=(1/2)sin(2·π/2)-2·(π/2)=(1/2)·(sinπ)-π=(1/2)·0-π=-π
f`(x)=(1/2)·(cos2x)·(2x)`=cos2x
f`(x₀)=f`(π/2)=cos(2·(π/2))=cosπ=-1

y-(-π)=-1·(x-(π/2))
y=-x-(π/2)

(413k баллов)