1.
2sin²x - 5sin x·cos x = 3cos²x
Делим почленно на cos²x.
2tg²x - 5tg x = 3
Замена: tg x = t
2t² - 5t - 3 = 0
D = 25+ 24 = 49
t = 5-7 / 4 = -1/2
t = 5+7 / 4 = 3
tg x = -1/2
tg x = 3
x = -arc tg 1/2 + πn, n ∈ Z
x = arc tg 3 + πk, k ∈ Z
2.
2cos 2x + 5cos²x = 8sin 2x - 6
7cos²x - 2sin²x = 16sin x·cos x - 6sin²x - 6cos² x
4sin²x - 16sin x·cos x + 13cos²x = 0
Делим почленно на cos²x.
4tg²x - 16tg x + 13 = 0
Замена: tg x = t
4t² - 16t + 13 = 0
D= 16² - 16·13 = 16·3 = 48
t = 16-√48 / 16 = 1 - √3/4
t = 16+√48 / 16 = 1 + √3/4
tg x = 1 - √3/4
tg x = 1 + √3/4
x = arc tg (1 - √3/4) + πn, n ∈ Z
x = arc tg (1 + √3/4) + πk, k ∈ Z