Основание пирамиды MABC служит прямоугольный треугольник ABC, катеты которого AC=8 см...

0 голосов
249 просмотров

Основание пирамиды MABC служит прямоугольный треугольник ABC, катеты которого AC=8 см BC=6 см. Высота пирамиды равна 3√5 см. Двугранные углы при основании пирамиды равны между собой. Найти площадь площадь полной поверхности пирамиды. Пожалуйста!!!


Геометрия (167 баллов) | 249 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

S = Sосн + SMAC + SMAB + SMCB
Sосн = 0.5 * AC * BC = 0.5 * 6 * 8 = 24
Так как Двугранные углы при основании пирамиды равны, то основание высоты - центр вписанной окружности.
R=2S/P. AC=10(теор. Пифагора). R=2*24/10+8+6=2. MH - апофема. MH=корень из высота в квадрате+R в квадрате=7. Площадь боковой грани = 0,5*апофему*соответствующую сторону основания, то есть SMAC=0.5*7*AC=28, SMAB=0.5*7*AB=35, SMCB=21.
Итак, площадь = 24 + 28 + 35 + 21 = 108

(6.7k баллов)