Исследовать график функции и построить его y=(x/4)-2x^2 1) найти область определения...

0 голосов
31 просмотров

Исследовать график функции и построить его
y=(x/4)-2x^2
1) найти область определения функции;
2) выяснить, не является ли функция чётной или нечётной;
3)пересечение с осями Ox и Oy;
4) найти асимптоты графика функции;
5) исследовать монотонность функции и найти ее экстремумы;
6) найти точки перегиба, установить интервалы выпуклости и вогнутости графика функции;
7) исследовать знак функции.


Математика (61 баллов) | 31 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) найти область определения функции: -∞ < x < +∞;2) выяснить, не является ли функция y=(x/4)-2x^2 чётной или нечётной:подставим переменную (-х)
y(-х)=(-x/4)-2x^2 = -(y=(x/4)+2x^2) ≠ у(х) и ≠ -(у(х). Поэтому функция общего вида.3)пересечение с осями Ox и Oy;
- с осью Ох при у = 0.
(x/4)-2x^2 =0,25х - х² = х(0,25-2х) = 0.
Имеем 2 точки пересечения с осью Ох: х = 0 и х = 0,25/2 = 0,125.
4) найти асимптоты графика функции - не имеет;
5) исследовать монотонность функции и найти ее экстремумы.
График функции 
y=(x/4)-2x^2 это парабола ветвями вниз.
Экстремумом является её максимум в вершине.
Хо = -в/2а = -0,25/(2*(-2)) = 1/16 = 
0,0625.
Yo = (0,0625/4)-2*0,0625
² = 0,007813.
6) найти точки перегиба, установить интервалы выпуклости и вогнутости графика функции;
У параболы нет точки перегиба, заданная функция вся выпукла.
Вторая производная равна -4, 
если f '' ( x ) < 0 для любого x ( a, b ), то функция f ( x ) является выпуклой на интервале ( a, b ). 
7) исследовать знак функции.
Положительные значения функция имеет на отрезке (0; 0,125),
отрицательные: (-
∞; 0)∪(0,125; +∞).

(309k баллов)