Треугольник со сторонами 13, 14 и 15 вращается вокруг стороны длиной 14. Объём...

0 голосов
30 просмотров

Треугольник со сторонами 13, 14 и 15 вращается вокруг стороны длиной 14. Объём полученного тела вращения равен xπ. Найдите х.


image

Геометрия (43 баллов) | 30 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Тело вращения представляет собой объёмную фигуру, состоящую из двух конусов с образующими, равными 15 и 13 и общим основанием с радиусом, равным высоте треугольника, проведённой к стороне длиной 14. 
Проведём эту высоту, h=R. Она делит сторону, равную 14 на два отрезка х и у.  х+у=14.
Площадь тр-ка S=a·h/2 ⇒ h=2S/a=2S/14=S/7.
Площадь также можно вычислить по формуле Герона S=√(p(p-a)(p-b)(p-c)),
p=(13+14+15)/2=21.
S=√(21(21-13)(21-14)(21-15))=84.
R=h=S/7=84/7=12.
Объём верхнего конуса: V₁=So·h₁/3=So·x/3, где So - площадь основания. So=πR²=144π.
Объём нижнего конуса: V₂=So·h₂/3=So·y/3.
Объём тела вращения:
V=V₁+V₂=So·x/3+So·y/3=So·(x+y)/3=144π·14/3=672π (ед³)

По условию V=xπ ⇒ x=V/π=672 - это ответ.

(34.9k баллов)