Log5 (3+x^2)= log2 28
Log5 (3+x^2)= log2 (28) Одз: 3+х²>0 ; х²> -3 (всегда) log5 (3+x²)= log2 (7·4) 5^( log2 (7·4) )= 3+x² 5^( log2(4)+log2(7) )= 3+x² 5^( 2+log2(7) )= 3+x² 5²·5^log2(7) = 3+x² 5²·5^log2(7)–3 = x² ±( 5²·5^log2(7)–3 )^½ = x²