Точка K-середина ребра DA тетраэдра DABC. M-точка пересечения медиан треугольника ABC,...

0 голосов
113 просмотров

Точка K-середина ребра DA тетраэдра DABC. M-точка пересечения медиан треугольника ABC, точка P принадлежит ребру BC, причём BP:CP=1:2. Разложите по векторам а=DA, b= DB, c= DC векторы AM, BM, CM, KM, KP, AP, PM


Геометрия (223 баллов) | 113 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

СУММА. Начало второго вектора совмещается с концом первого, начало третьего — с концом второго и так далее, сумма же n векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом n-го (то есть изображается направленным отрезком, замыкающим ломаную).
РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).

Вектора АМ=(2/3 )*АН, ВМ=(2/3)*ВL, СМ=(2/3)*СN - так как точка
М - пересечения медиан.
Выразим стороны треугольника АВС через вектора a, b и c.
АС=DC-DA, или АС=с-a. AB=DB-DA, или АВ=b-a. BC=DC-DB, или BC=c-b. Тогда
Вектор АН=АB+BН или AH=(b-a)+(c-b)/2 или АН=(b-2a+c)/2.
Вектор CN=AN-AС или CN=(b-a)/2-(c-a) или CN=(a-2c+b)/2.
Вектор BL=AL-AB или BL=(c-a)/2-(b-a) или BL=(a-2b+c)/2.
Тогда
Вектор АМ=(2/3)*АН или АМ=(b-2a+c)/3.
Вектор BM=(2/3)*BL или BМ=(a-2b+c)/3.
Вектор CM=(2/3)*CN или CМ=(a-2c+b)/3.
Вектор АP=AB+BP или АР=b-a+(1/3)*(c-b).
АР=(2b-3a+c)/3.
Вектор PM=BM-BP или PM=(a-2b+c)/3 -(1/3)*(c-b).
PM=(a-b)/3.
Вектор KP=KA+AP или KP=a/2 + (2b-3a+c)/3.
KP=(4b-3a+2c)/6.
Вектор KM=KP+PM или KM=(4b-3a+2c)/6 + (a-b)/3..
KM=(2b-a+2c)/6.


image
(117k баллов)