Дано:
на картинке
Решение:
Так как пирамида правильная и SO перпендикулярно ABCD, то SOA - прямоугольный треугольник. В прямоугольном треугольнике катет, лежащий против угла в 30 градусов равен половине гипотенузы. Значит SO=SA/2.
Обозначим SA=2a, тогда SO=a. По теореме Пифагора найдем ОА:
Так как в основании лежат квадрат, то он имеет равные взаимно перпендикулярные диагонали, которые точкой пересечений делятся пополам. Значит, треугольник АВО - прямоугольный и АО=ВО.
По теореме Пифагора находит АВ из прямоугольного треугольника АВО:
Так как точка Н - середина АВ, то НВ=НА=АВ/2
Из прямоугольного треугольника OНВ находим OН по теореме Пифагора:
Из прямоугольного треугольника SOH:
Ответ: