Объясните подробно, как решать данный пример: Каждый шаг объясните: Это дифференциальное...

0 голосов
33 просмотров

Объясните подробно, как решать данный пример: Каждый шаг объясните:

Это дифференциальное уравнение:

y''+3y'=9x


Алгебра (2.0k баллов) | 33 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
y''+3y'=9x
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о.  + уч.н.

Найдем уо.о. (общее однородное)
y''+3y'=0
Применим метод Эйлера
Пусть y=e^{kx}, тогда подставив в однородное уравнение, получаем характеристическое уравнение
k^2+3k=0
Корни которого k_1=-3;\,\,\,\, k_2=0
Тогда общее решение однородного уравнения будет
y_{o.o.}=C_1y_1+C_2y_2=C1e^{-3x}+C_2

Найдем теперь уч.н.(частное неоднородное)
f(x)=9x\cdot e^{0x} отсюда \alpha=0;\,\,\,\,\, P_n(x)=9x;\,\,\, n=1
где P_n(x) - многочлен степени х

Сравнивая \alpha с корнями характеристического уравнения  и, принимая во внимания что n=1 , частное решение будем искать в виде:
уч.н. = x e^{0x}(A+Bx)

Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
y'=A+2Bx\\ \\ y''=(A+2Bx)'=2B

Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х

2B+3(A+2Bx)=9x\\ 2B+3A+6Bx=9x\\ \\ \displaystyle\left \{ {{2B+3A=0} \atop {6B=9}} \right. \Rightarrow \left \{ {{A=-1} \atop {B= \frac{3}{2} }} \right.

Тогда частное решение неоднородного будет иметь вид

уч.н. = \dfrac{3x^2}{2}-x

Запишем общее решение исходного уравнения

Y_{O.H}= \dfrac{3x^2}{2}-x +C_1e^{-3x}+C_2 - ответ