1) Множество решений неравенства: Варианты ответов: A) (-√8;-2]U{2;√8) B)...

0 голосов
29 просмотров

1) Множество решений неравенства: \frac{3}{4- x^{2} } \geq \frac{1}{4}
Варианты ответов: A) (-√8;-2]U{2;√8) B) (-∞;-2)U(-2;2)U(2;∞) C) (-∞;√8]U[√8;∞) D) (-2;2) E) [-2;2]
2) Если а=\frac{1}{ \sqrt{3} } - \frac{1}{ \sqrt{8} } и b= \frac{1}{ \sqrt{3} } + \frac{1}{ \sqrt{8} } , то выражение а³+b³/(a+b)³ равно: Варианты ответов: A) 17/32 B) 37/32 C) 47/32 D) -27/32
3) Все корни уравнения |x-7|-|x+2|=9 образуют множество: Варианты ответов: A)∅ B) {-2} C) (-∞;-2]U[7;∞) D) (-∞;∞) E) (-∞;-2]


Алгебра (4.0k баллов) | 29 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) \frac{3}{4-x^2} \geq \frac{1}{4}
\frac{3}{4-x^2} - \frac{1}{4} \geq 0
\frac{12-(4-x^2)}{4(4-x^2)} \geq 0
\frac{8+x^2}{4(2-x)(2+x)} \geq 0
Числитель и число 4 в знаменателе больше 0 при любом x, поэтому на них можно разделить, все зависит только от скобок в знаменателе:
\frac{1}{(2-x)(2+x)} \geq 0
По методу интервалов:
x ∈ (-2; 2)
Ответ: D) (-2; 2)

2) \frac{a^3+b^3}{(a+b)^3} = \frac{(a+b)(a^2-ab+b^2)}{(a+b)^3} =\frac{a^2-ab+b^2}{(a+b)^2}
Нам дано: a= \frac{1}{ \sqrt{3} } - \frac{1}{ \sqrt{8} } ; b=\frac{1}{ \sqrt{3} } + \frac{1}{ \sqrt{8} }
Отсюда: a+b=\frac{1}{ \sqrt{3} } - \frac{1}{ \sqrt{8} }+\frac{1}{ \sqrt{3} } + \frac{1}{ \sqrt{8} }=\frac{2}{ \sqrt{3} }
a^2=(\frac{1}{ \sqrt{3} }-\frac{1}{ \sqrt{8} })^2= \frac{1}{3}- \frac{2}{ \sqrt{3*8} }+ \frac{1}{8}= \frac{11}{24} - \frac{2}{2 \sqrt{6} }= \frac{11}{24} - \frac{ \sqrt{6} }{6}
b^2=(\frac{1}{ \sqrt{3} }+\frac{1}{ \sqrt{8} })^2= \frac{1}{3}+ \frac{2}{ \sqrt{3*8} }+ \frac{1}{8}= \frac{11}{24} + \frac{2}{2 \sqrt{6} }= \frac{11}{24} + \frac{ \sqrt{6} }{6}
ab=(\frac{1}{ \sqrt{3} }-\frac{1}{ \sqrt{8} })(\frac{1}{ \sqrt{3} }+\frac{1}{ \sqrt{8} })= \frac{1}{3} - \frac{1}{8} = \frac{5}{24}
Подставляем всё это
\frac{a^3+b^3}{(a+b)^3} =\frac{a^2-ab+b^2}{(a+b)^2}=(\frac{11}{24} - \frac{ \sqrt{6} }{6}- \frac{5}{24} +\frac{11}{24} + \frac{ \sqrt{6} }{6}):(\frac{2}{ \sqrt{3} })^2= \frac{17}{24} : \frac{4}{3} = \frac{17}{32}
Ответ: A) 17/32

3) |x - 7| - |x + 2| = 9
При x < -2 будет |x - 7| = 7 - x; |x + 2| = -x - 2
7 - x - (-x - 2) = 7 - x + x + 2 = 9
9 = 9 - это истинно для любого x ∈ (-oo; -2)
При -2 <= x < 7 будет |x - 7| = 7 - x; |x + 2| = x + 2<br>7 - x - (x + 2) = 7 - x - x - 2 = 5 - 2x = 9
-2x = 4; x = -2 - подходит
При x >= 7 будет |x - 7| = x - 7; |x + 2| = x + 2
x - 7 - (x + 2) = x - 7 - x - 2  = 9
-9 = 9
Решений нет
Ответ: Е) (-oo; 2]

(320k баллов)
0

Большое спасибо, выручили!))

0

Большое пожалуйста! :)