Конус вписан в пирамиду, основанием которой является прямоугольная трапеция с...

0 голосов
104 просмотров

Конус вписан в пирамиду, основанием которой является прямоугольная трапеция с основаниями, равными 2 и 4. Объём конуса равен 64п/81. Вычислите угол наклона боковых граней к плоскости основания.


Геометрия (919 баллов) | 104 просмотров
Дан 1 ответ
0 голосов

Начнем с того, что вспомним: в трапецию можно вписать окружность тогда и только тогда, когда суммы ее противоположных сторон равны. 
Следовательно, сумма ее боковых сторон равна 2+8=10, а

каждая боковая сторона равна 5 см.


Угол наклона боковых граней пирамиды к плоскости основания образован радиусом окружности основания конуса и высотой треугольников - боковых граней пирамиды.


Нам необходимо знать диаметр основания конуса, который в то же время является высотой трапеции. 
Опустив высоту к большему основанию из вершины В трапеции, получим прямоугольный треугольник с гипотенузой 5 см и катетами 
один =3 см (полуразность оснований) и
второй - высота трапеции
h= D основания конуса
h²=25-9=16
D=h=√16=4 см
r=2см
Для нахождения высоты конуса ( и пирамиды) применим формулу объёма конуса 
V= ⅓ S H= ⅓ π r² H
Объём конуса по условию равен ( 8п√3):3 см
⅓ π4 H=( 8п√3):3
4 π H:3=( 8п√3):3
4 H = 8 √3 
Н=2√3 см
РО=Н=2√3

Повторюсь:
Угол наклона боковых граней пирамиды к плоскости основанияобразован радиусом окружности основания конуса и высотойтреугольников - боковых граней пирамиды. 
РМ=РК=РН=√(РО²+ОМ²)=√(12+4)=4 см
ОК=ОМ=r=2 см
Если в прямоугольном треугольнике, какими, без сомнения, являются треугольники КОР и МОР, катет равен половине гипотенузы, то он противолежит углу 30°, а второй острый угол в таком треугольнике равен 60°.

То, что диаметр основания конуса равен его образующей,   подтверждает найденное решение. 
Ответ:

искомый угол равен 60°.


(265 баллов)