Даны линии у=3-2х-x^2, x+y=1.
Находим границы фигуры:
-x² - 2x + 3 = 1 - x,
-x² - x + 2 = 0 или, поменяв знаки, х² + х - 2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.Так как прямая у = -х + 1 проходит выше параболы у = -x² - 2x + 3 на найденном промежутке, то площадь равна интегралу:
![S= \int\limits^1_{-2} {((-x+1)-(-x^2-2x+3))} \, dx = \int\limits^1_{-2} {(x^2+x-2)} \, dx= S= \int\limits^1_{-2} {((-x+1)-(-x^2-2x+3))} \, dx = \int\limits^1_{-2} {(x^2+x-2)} \, dx=](https://tex.z-dn.net/?f=S%3D+%5Cint%5Climits%5E1_%7B-2%7D+%7B%28%28-x%2B1%29-%28-x%5E2-2x%2B3%29%29%7D+%5C%2C+dx+%3D+%5Cint%5Climits%5E1_%7B-2%7D+%7B%28x%5E2%2Bx-2%29%7D+%5C%2C+dx%3D++++)