Ученик не заметил знака умножения между двумя трехзначными числами и написал одно...

0 голосов
53 просмотров

Ученик не заметил знака умножения между двумя трехзначными числами и написал одно шестизначное число, которое оказалось в семь раза больше произведения двух этих семизначных чисел. Найдите эти числа.


Математика (888 баллов) | 53 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решение

  Пусть x, y – искомые трёхзначные числа. По условию  7xy = 1000x + y.

  Первый способ. Разделим обе части равенства на x:  7y = 1000 + y/x.  Число y/x положительно и меньше 10, так как  y ≤ 999,  x ≥ 100.  Поэтому  1000 < 7y < 1010.  Деля это неравенство на 7, получаем  1426/7 < y < 1442/7.  Так как y – целое число,  y = 143 или 144. <br>  Подставляя  y = 143  в равенство, получаем   7x·143 = 1000x + 143.  Решая это уравнение, находим  x = 143. 
  Если  y = 144,  то аналогичное уравнение даёт  x = 18,  а это число – не трёхзначное.

  Второй способ. Перепишем равенство в виде  1000x = (7x – 1)y.  Числа x и  7x – 1  взаимно просты. Значит,  7x – 1  – делитель числа 1000. Но 
7x – 1 ≥ 7·100 – 1 = 699,  поэтому  7x – 1 = 1000,  откуда  x = 143.  Подставляя в исходное уравнение, находим  y = 143.
Ответ
143 и 143.

(44 баллов)