1 Sбок=πRL. Пусть угол между высотой и образующей конуса α. L=R/sinα, L1=3R/0,5sinα=6R/sinα=6L.
Тогда S1=π*3R*6L=18πRL=18S
Ответ в 18 раз.
2. Sбок=2πRHц=πRL, т к Основания цилиндра и конуса равны, то L=2Hц.
Hкон - катет против угла 30, Hкон=1/2L=Hц.
Oтношение высоты цилиндра к высоте конуса равно 1.
3. Длина дуги сектора равна L=πR/180 *α=π*6/180 *60=2π.
Тогда длина окружности основания конуса равна 2π. 2πR=2π, R=1.
Площадь боковой поверхности конуса S=πRL=π*1*6=6π.