\infty} \frac{100}{x}=0" alt="lim_{x->\infty} \frac{100}{x}=0" align="absmiddle" class="latex-formula">
\infty} (5-\frac{40}{3x^2})=5-0=5" alt="lim_{x->\infty} (5-\frac{40}{3x^2})=5-0=5" align="absmiddle" class="latex-formula">
\infty} \frac{4x-10}{3+x}=lim_{x->\infty} \frac{4-\frac{10}{x}}{\frac{3}{x}+1}=\\\\ \frac{4-0}{0+1}=4" alt="lim_{x->\infty} \frac{4x-10}{3+x}=lim_{x->\infty} \frac{4-\frac{10}{x}}{\frac{3}{x}+1}=\\\\ \frac{4-0}{0+1}=4" align="absmiddle" class="latex-formula">
\infty} \frac{5x^3-7x}{x^2+8x}=\\\\lim_{x->\infty} \frac{5x-\frac{7}{x^2}}{1+\frac{8}{x}}=\infty" alt="lim_{x->\infty} \frac{5x^3-7x}{x^2+8x}=\\\\lim_{x->\infty} \frac{5x-\frac{7}{x^2}}{1+\frac{8}{x}}=\infty" align="absmiddle" class="latex-formula">
1} \frac{x^2-1}{x-1}=lim_{x->1} \frac{(x-1)(x+1)}{x-1}=\\\\lim_{x->1} (x+1)=1+1=2" alt="lim_{x->1} \frac{x^2-1}{x-1}=lim_{x->1} \frac{(x-1)(x+1)}{x-1}=\\\\lim_{x->1} (x+1)=1+1=2" align="absmiddle" class="latex-formula">
0} \frac{sin (4x)}{2x}=lim_{x->0} (\frac{sin(4x)}{(4x)}*2)=1*2=2" alt="lim_{x->0} \frac{sin (4x)}{2x}=lim_{x->0} (\frac{sin(4x)}{(4x)}*2)=1*2=2" align="absmiddle" class="latex-formula">
0} \frac{tg(5x)}{sin(15x)}=\\\\lim_{x->0} (\frac{tg(5x)}{5x}*\frac{15x}{sin(15x)}*\frac{1}{3}=\\\\1*1*\frac{1}{3}=\frac{1}{3}" alt="lim_{x->0} \frac{tg(5x)}{sin(15x)}=\\\\lim_{x->0} (\frac{tg(5x)}{5x}*\frac{15x}{sin(15x)}*\frac{1}{3}=\\\\1*1*\frac{1}{3}=\frac{1}{3}" align="absmiddle" class="latex-formula">
0} (1+3x)^{\frac{1}{2}}=(1+3*0)^{\frac{1}{2}}=1" alt="lim_{x->0} (1+3x)^{\frac{1}{2}}=(1+3*0)^{\frac{1}{2}}=1" align="absmiddle" class="latex-formula">
\infty}(1-\frac{1}{2x})^x=(lim_{x->\infty} (1-\frac{1}{2x})^{-2x})^{-\frac{1}{2}}=\\\\e^{-\frac{1}{2}}=\frac{1}{\sqrt{e}}" alt="lim_{x->\infty}(1-\frac{1}{2x})^x=(lim_{x->\infty} (1-\frac{1}{2x})^{-2x})^{-\frac{1}{2}}=\\\\e^{-\frac{1}{2}}=\frac{1}{\sqrt{e}}" align="absmiddle" class="latex-formula">