АВ=ВС ⇒ ∠ВАС=∠ВСА, АД и СЕ - биссектрисы.
Треугольники АДС и АЕС равны т.к. ∠ЕАС=∠ДСА, ∠ЕСА=∠ДАС и сторона АС общая, значит АЕ=ДС, значит ЕД║АС, значит АЕДС - трапеция.
Биссектриса трапеции отсекает от противолежащего основания отрезок, равный прилежащей боковой стороне (свойство). Так как биссектриса АД одновременно диагональ, то АЕ=ЕД.
Доказано.
Можно доказать и свойство.
∠ЕДА=∠ДАС как накрест лежащие, ∠ДАС=∠ДАЕ как углы биссектрисы, значит ∠ЕДА=∠ДАС, следовательно треугольник АЕД - равнобедренный. В нём АЕ=ЕД.