Докажем с помощью математической индукций база 1 верна теперь переход n->n+1 переход так как предыдущий ряд равен то нужно доказать что докажем Доказано 2)n+1\\ 1^3+3^3+5^3...(2n-1)^3+(2n+1)^3=(n+1)^2(2(n+1)^2-1)\\ n^2(2n^2-1)+(2n+1)^3=(n+1)^2(2(n+1)^2-1)\\ (n+1)^2(2n^2+4n+1)=(n+1)^2(2n^2+4n+1)" alt="1^3+3^3+5^3...+(2n-1)^3=n^2(2n^2-1)\\ n=1\ verno\\ n->n+1\\ 1^3+3^3+5^3...(2n-1)^3+(2n+1)^3=(n+1)^2(2(n+1)^2-1)\\ n^2(2n^2-1)+(2n+1)^3=(n+1)^2(2(n+1)^2-1)\\ (n+1)^2(2n^2+4n+1)=(n+1)^2(2n^2+4n+1)" align="absmiddle" class="latex-formula"> Доказано