Имеется много одинаковых квадратов. В вершинах каждого из них в произвольном порядке...

0 голосов
614 просмотров

Имеется много одинаковых квадратов. В вершинах каждого из них в произвольном порядке написаны числа 1, 2, 3 и 4. Квадраты сложили в стопку и написали сумму чисел, попавших в каждый из четырех углов стопки. Может ли оказаться так, что в каждом углу стопки сумма равна 2016?


Математика (21 баллов) | 614 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Нет, не может. Так как сумма чисел в углах каждого квадрата одна и та же: 1+2+3+4=10, то сумма всех чисел во всех квадратах стопки должна быть кратной 10. Но если сумма чисел в каждом углу стопки равна 2016, то общая сумма всех чисел во всех квадратах стопки равна 2016*4, что не кратно 10. Противоречие.

(56.6k баллов)