1-a^2/(1+ax)^2-(a+x)^2*x+x^2/1-x = (1-a^2)(x+x^2)/((1+ax)^2-(a+x)^2)(1-x) =
= (-a^2+1)*x*(1+x)/((xa+1)^2-(a+x)^2)(-x+1) = (a+1)(-a+1)(x+1)*x/((xa+1)^2-(a+x)^2)(-x+1) = x(x+1)(a+1)(-a+1)/(-x+1)((xa+1)^2-(a+x)^2) = x(x+1)(a+1)(-a+1)/(-x+1)(xa+1+a+x)(xa+1+(-a)-x) = x(x+1)(a+1)(-a+1)/(-x+1)(xa+a+x+1)(xa-a-x+1) = x(x+1)(a+1)(-a+1)/(-x+1)(a+1)(x+1)(a-1)(x-1) = -x/(-x+1)(x-1)
Ответ: -x/(-x+1)(x-1)