Известно, что парабола проходит через точку А(-1;0,75), и ее вершина находится в начале...

0 голосов
48 просмотров

Известно, что парабола проходит через точку А(-1;0,75), и ее вершина находится в начале координат. Найдите уравнение этой параболы и вычислите, в каких точках она пересекает прямую .


Математика (87 баллов) | 48 просмотров
0

Пересекает прямую. Какую прямую?

Дан 1 ответ
0 голосов

Парабола имеет вершину в начале координат, значит уравнение параболы будет иметь вид:
y = ax^{2},
где какой-то коэффициент.
Найдем этот коэффициент, подставив координаты точки В.
\frac{1}{4}=a\cdot (-1)^{2}\\ a = \frac{1}{4}

Значит, уравнение нашей параболы выглядит так:
y = \frac{1}{4}x^{2}

Найдем точки пересечения прямой и параболы, подставив 9 вместо у:
9=\frac{1}{4}x^{2}\\ 36=x^{2}\\ x= \± \ 6
Прямая у=9 пересекает параболу в точках (-6;9) и (6;9)

(34 баллов)