Найдите отношение радиуса к высоте цилиндрической консервной банки наибольшей вместимости...

0 голосов
69 просмотров

Найдите отношение радиуса к высоте цилиндрической консервной банки наибольшей вместимости при данной полной поверхности


Математика (136 баллов) | 69 просмотров
0

А полная поверхность крышку учитывает или только дно?

0

вот этого я не знаю

Дан 1 ответ
0 голосов
Правильный ответ

Sп.п = 2*pi*R^2 + 2*pi*R*H - площадь полной поверхности. Если не учитывать крышку, то первое слагаемое будет без множителя 2.
H = (Sп.п - 2*pi*R^2)/2*pi*R - выражаем высоту через радиус, Sп.п. - заданная константа.
V = pi*R^2*H - подставляем сюда найденной для Н выражение.
V = pi *R^2  * (Sп.п - 2*pi*R^2)/2*pi*R  =
 = R * Sп.п./2  -  pi*R^3
Найдем теперь максимум выражения от R. Для этого ищем производную
V' = Sп.п/2 - 3*pi*R^2
Sп.п/2 - 3*pi*R^2 = 0
R^2 = Sп.п/(6*pi)
R =  +- корень из этого выражения
методом пробной точки ищем экстремумы:
   +                            -
0 ----- пол.корень --------
Ограничиваемся нулем, т.к.. радиус сугубо больше ноля.
Видим, что пол. корень - локальный и глобальный максимум.
R = sqrt(Sп.п/(6*pi))
H = (Sп.п - 2*pi*R^2)/2*pi*R 
H/R = (Sп.п - 2*pi*R^2)/2*pi*R^2 
R/H = (2*pi*R^2)/(Sп.п - 2*pi*R^2)
И сюда надо подставить найденное значение R = sqrt(Sп.п/(6*pi))

Соответственно, если без крышки, то двойка убирается и ответ чуть изменится.

(63.7k баллов)
0

спасибо огромное!