Равные по условию ∠А и ∠В- накрестлежащие при пересечении двух прямых секущей CD⇒
АС║BD.
Углы при О равны как вертикальные.
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
∆ АСО и ∆ ВDО подобны по первому признаку подобия треугольников.
Из подобия следует отношение:
СО:OD=AO:OB
4:6=5:ОВ⇒
ОВ=30:4=7,5
Коэффициент подобия равен отношению сходственных сторон.
k=СО:OD= 4/6=2/3⇒
АС:ВD=2/3
Отношение площадей подобных треугольников равно квадрату коэффициента их подобия:
SAOC:SBOD =k²=(2/3)²=4/9