Всем привет, неравенство в третьей степени не выходит что-то у меня дискриминант......

0 голосов
61 просмотров

Всем привет, неравенство в третьей степени не выходит что-то у меня дискриминант... Помогите пожалуйста :)
x^3-11x^+19x-9 \geq 0


Алгебра (689 баллов) | 61 просмотров
0

там 11x^2

0

вы точно всё правильно написали

0

да все правильно... ответ то выходит но способом разложения...

0

ответ - 0 и 9 и 1

Дан 1 ответ
0 голосов
Правильный ответ

Угадываем корень x=1 (1-11+19-9=0)⇒ многочлен раскладывается на скобки, одна из которых (x-1), а вторая является многочленом второй степени. Чтобы найти его, можно поделить исходный многочлен на (x-1), но лень. Попробуем подобрать его без деления столбиком. Ясно, что коэффициент при x^2 равен 1 (иначе при перемножении не получится коэффициент 1 при x^3). Ясно также, что свободный член равен +9 (чтобы при перемножении получился правильный свободный член
-9=(-1)·9.

Остается угадать коэффициент при первой степени.

x^3-11x^2+19x-9=(x-1)(x^2+ax+9).
В левой части коэффициент при первой степени равен 19, а в правой 
(перемножив скобки) 9-a. Значит, 9-a=19; a= -10⇒  
x^3-11x^2+19x-9=(x-1)(x^2-10x+9).
Дальше просто:
 
 x^3-11x^2+19x-9=(x-1)^2(x-9)≥0; 
применяем метод интервалов, не забывая, что у нас есть скобка во второй степени.

Ответ: {1}∪[9;+∞)

А что Вы собирались делать с дискриминантом, понять невозможно. Дискриминант же используется для уравнений второй степени (конечно, понятие дискриминанта существует для многочленов любой степени, но ведь там получается сплошное занудство, даже для уравнения 3-ей степени. Применение формул Кардано затрудняется наличием второй степени (придется делать линейный сдвиг, чтобы избавиться от нее). 

К успеху в этой задаче, кстати, приводит поиск кратных корней с помощью поиска общих корней многочлена и его производной
3x^2-22x+19=(x-1)(3x-19)


(64.0k баллов)
0

я сначала вынес за скобку t и вышло 10 и 1... понял потом что-то не то.. залез в интернет 9 и 1.. А делить да просто, вопрос таков как угадать то число... на что делить...

0

Идею понял :) Буду сейчас ещё подобные пробовать..) 17 пересдача последняя школьной математики) вышку сдал с первого раза, а школьную все никак))

0

Спасибо огромное :) как будет доступно отмечу как лучшее)

0

Если многочлен с целыми коэффициентами, то поиск целых решений производится среди делителей свободного члена (конечно, целых решений может и не быть). В нашем случае поиск ограничивается числами 1, -1, 3, -3, 9, -9.Первый же из них подошел