2cos²(π/2 +x) =√2sinx , x ∈ [ -5π ; -7π/2].
--------------
2cos²(π/2 +x) =√2sinx ⇔2 *(-sinx)² =√2sinx ⇔2sin²x = √2sinx ⇔
2sinx(sinx -1 / √2) = 0 ⇔ [ sinx = 0 ; sinx =1/√2 .⇒
[ x =πn ; x =π/4 + 2πn ; x =3π/4 +2πn , n∈Z.
---------------
x =πn ⇒ x= - 5π и x = - 4π ∈ [ -5π ; -7π/2] ;
---
x =π/4 + 2πn
-5π ≤ π/4 +2πn ≤ -7π/2 || *4 / π ||⇔ -20 ≤1+8n ≤ -14 ⇔ -21/8 ≤n ≤ -15/8⇒
n = -2 , x =π/4 - 4π = -3,75π.
---
x =3π/4 +2πn
-5π ≤ 3π/4 +2πn ≤ -7π/2 || *4 / π ||⇔ -20 ≤ 3 +8n ≤ -14 ⇔ -23 ≤ 8n ≤ -17 ⇔ -23/8 ≤ n ≤ -17 /8 нет целое число n.
ответ : { - 5π ; - 4π ; -3,75π } .