Это задача на теорему о трех перпендикулярах: если KO⊥ плоскости, прямая лежит в этой плоскости, то основания перпендикуляров к этой прямой,
проведенных из точек K и O, совпадают. Поэтому MK⊥AB. Далее, так как BM⊥OM и KM, BM⊥плоскости OMK, поэтому BM даст нам расстояние от B до этой плоскости. BM ищется из прямоугольного треугольника BMK, в котором катет KM по условию равен √3, а угол против BM равен 30°:
BM=KM·tg 30°=√3·(√3/3)=1
Ответ: 1