В призме АВСА1В1С1 АВ=ВС=b, ∠ВАС=∠ВСА=α, ∠А1СА=f.
Диаметр цилиндра, вписанного в призму, равен диаметру окружности, вписанной в основание призмы, а их высоты - равны.
Проведём ВМ⊥АС.
АМ=АВ·cosα=b·cosα,
AC=2AM=2b·cosα.
В тр-ке АСА1 АА1=АС·tgf=2b·cosα·tgf.
В тр-ке АВС по т. синусов АВ/sinα=2R ⇒ R=b/2sinα.
Объём цилиндра:
V=SH=πR²·AA1=π(b/2sinα)²·2b·cosα·tgf=b³ctgα·tgf·π/(2sinα) - это ответ.