Придумайте правило по которому можно продолжить последовательность и запишите три...

0 голосов
39 просмотров

Придумайте правило по которому можно продолжить последовательность и запишите три следующих числа 3 60 1200 24000


Математика (16 баллов) | 39 просмотров
Дано ответов: 2
0 голосов

Каждое следующее число умножается на 20.

(3.0k баллов)
0

24000*20

0

24000*20*20

0

24000*20*20*20

0

Помогите решить 17 целых 3/8-у =9 целых 5/12 пожалуйста

0 голосов

Из данной последовательности можно найти то, что каждый следующий член последовательности увеличивается в 20 раз.
Тогда правило для n-ого члена последовательности {x_{n}}:
x_{n} =x_1*q^{(n-1)}, где x_{1} - 1-ый член последовательности, а в этом случае геометрической прогрессии; q - знаменатель этой геометрической прогрессии; n - номер члена данной последовательности.
x_{1}=3;
q=20.
Из данной формулы можно вывести следующую:
x_{n}=x_{n-1}*q.
24000 - это 4-ый член данной последовательности, значит нам нужно найти члены: 5, 6, 7.
x_{5}=x_4*20=480000;
x_6=x_5*20=9600000;
x_7=x_6*20=192000000.
Ответ: 1). x_{n} =x_1*q^{(n-1)}; 2). 480000; 9600000; 192000000.

 

(1.1k баллов)