Четвертый член арифметической прогрессии равен 1. При каком значении разности прогрессии...

0 голосов
55 просмотров

Четвертый член арифметической прогрессии равен 1. При каком значении разности прогрессии сумма попарных произведений первых трех членов прогрессии будет наименьшей? (решить без производной)


Алгебра (3.4k баллов) | 55 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть d - разность прогрессии. По условию, a4=a1+3*d=1. Тогда a1=1-3*d, a2=1-2*d, a3=1-d. Сумма попарных произведений первых трёх членов S=a1*a2+a1*a3+a2*a3=(1-3*d)*(1-2*d)+(1-3*d)*(1-d)+(1-2*d)*(1-d)=1-5*d+6*d²+1-4*d+3*d²+1-3*d+2*d²=11*d²-12*d+3=11*(d²-12*d/11+3/11)=11*[(d-6/11)²-3/121]=11*(d-6/11)²-3/11. Так как (d-6/11)²≥0, то минимальное значение  это выражение, а с ним и вся сумма S, имеют при (d-6/11)²=0, откуда d=6/11. Ответ: при d=6/11.

(90.4k баллов)