Всем привет помогите с неравенством с модулем.. не получается :(

0 голосов
34 просмотров

Всем привет помогите с неравенством с модулем.. не получается :(
x^{2} +6x+|x+2|+8 \geq 0


Алгебра (689 баллов) | 34 просмотров
0

никто не знает?

Дан 1 ответ
0 голосов
Правильный ответ

Запишем так:
(x+3)^2+|x+2|≥1
Надеюсь, Вы знаете "галку" - график модуля. В нашем случае галка смещена на 2 единицы влево.
На участках x≤ - 3 и x≥ - 1 |x+2|≥1⇒ неравенство выполнено.
Параболу Вы также должны знать. В нашем случае она смещена на три 1 влево⇒она не ниже 1 на участках x≤ - 4 и x≥ - 2.
Значит, единственным проблемным промежутком является (-3;-2).
На этом участке модуль раскрывается с минусом; получается неравенство
x^2+6x-x+6≥0;
x^2+5x+6≥0;
(x+2)(x+3)≥0;
x∈(-∞;-3]∪[-2;+∞).
Значит, на участке (-3;-2) неравенство не выполняется.

Ответ: (-∞;-3]∪[-2;+∞)

P.S. Конечно, я пижонил, надо было просто рассмотреть два случая раскрытия модуля x
≤ - 2 и x≥ - 2 и в каждом случае решить квадратное неравенство, но в половину четвертого ночи я могу заставить себя работать только по пижонски. Так что не обижайтесь.

(64.0k баллов)
0

Спасибо огромное)

0

я сначала взял х+2 больше 0, потом неравенство и получил х=-5 х=-2 ну -5 не подходит понятно, потом х+2 <0 получил х3= -2 и х4=-3, минус 2 не подходит и того имеем два корня -2 и минус -3 и там я тупо не знал что с ними делать

0

Давайте в разумное время обсудим Ваше решение. А сейчас пора спать. Спокойной ночи

0

:) Спокойной ночи, удачного дня завтра/cегодня))