Из двух городов А и В , расстояние между которыми 80 км , одновременно навстречу друг -...

0 голосов
24 просмотров

Из двух городов А и В , расстояние между которыми 80 км , одновременно навстречу друг - другу выехали два автомобиля.После того , как они встретились , один из автомобилей прибыл в В через 20 минут , а другой в А через 45 минут . Найдите скорости автомобилей.


Математика (1.2k баллов) | 24 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Х-расстояние от А до места встречи
80-х-расстояние от В до места встречи
т-время, через которое встретились
20мин=20/60=1/3ч
45мин=45/60=3/4ч
  
  х         80-х
----- =------------  (скорость первого на разных участках равна)
  т         1/3

  х         
----- = 3(80-х)
  т      
 
  х         
----- = 240-3х
  т      

          х         
т= ----------
       240-3х


80-х        х        
------- =------------  (скорость второго на разных участках равна)
  т           3/4


80-х        4х        
------- =------------  
  т           3

     3(80-х)
т=--------------
        4х

     240-3
т=--------------
        4х

Приравниваем найденные т
          х            240-3х
      ----------= -------------
       240-3х         4х

(240-3х)²=х*4х
240²-2*240*3х+(3х)²=4х²
57600-1440х+9х²-4х²=0
5х²-1440х+57600=0 разделим на 5
х²-288х+11520=0
Д=(-288)²-4*1*11520=82944 - 46080 = 36864
х1=(-(-288)+√36864)/(2*1)=(288+192)/2=480/2=240 не подходит, т.к. 240>80
х2=(-(-288)-√36864)/(2*1)=(288-192)/2=96/2=48км -расстояние от А до места встречи

48:3/4=48*4/3=16*4=64 км/ч-скорость второго
(80-48):1/3=32*3/1=96 км/ч-скорость первого

(239k баллов)