1) f(x)=5ˣ +2x-9
f '(x)=5ˣ ln5 + 2
5ˣ ln5 +2=0
5ˣ ln5 = -2
нет решений
нет критических точек
f(-3)=5⁻³ + 2*(-3) - 9= ¹/₁₂₅ - 6 - 9 = ¹/₁₂₅ - 15 = - 14 ¹²⁴/₁₂₅
f(1)=5¹ +2*1-9=5-7= -2 - наибольшее значение
Ответ: -2.
2. f(x)=(x²-14x+14)e¹⁴⁻ˣ
f '(x)=(2x-14)e¹⁴⁻ˣ - (x²-14x+14)e¹⁴⁻ˣ=e¹⁴⁻ˣ(2x-14-x²+14x-14)=
=e¹⁴⁻ˣ(-x²+16x-28)
e¹⁴⁻ˣ(-x²+16x-28)=0
e¹⁴⁻ˣ=0 -x²+16x-28=0
нет решений x²-16x+28=0
D=(-16)²-4*28=256-112=144
x₁=⁽¹⁶⁻¹²⁾/₂=2∉[13; 17]
x₂=⁽¹⁶⁺¹²⁾/₂=14
f(13)=(13²-14*13+14)e¹⁴⁻¹³=(169-182+14)e=e≈2.7
f(14)=(14²-14*14+14)e¹⁴⁻¹⁴=14e⁰=14 - наибольшее
f(17)=(17²-14*17+14)e¹⁴⁻¹⁷=(289-238+14)e⁻³=65/(2.7)³≈3.3
Ответ: 14.
3) f(x)=log₂²x - 4log₂ x +3
ОДЗ: x≠0
нет решений
2log₂ x-4=0
ОДЗ: x>0
2log₂ x=4
log₂ x=2
x=2²
x=4∉[¹/₂; 2]
f(¹/₂)=log₂²(¹/₂)-4log₂ (¹/₂)+3=(log₂ 2⁻¹)² - 4log₂ 2⁻¹ +3=(-1)² -4*(-1)+3=
=1+4+3=8 - наибольшее
f(2)=(log₂ 2)² - 4log₂ 2 +3=1² -4+3=0
Ответ: 8.