9(2cos^2x - 1) + 20cosx + 7 = 0
18cos^2x - 9 + 20cosx + 7 = 0
18cos^2x + 20cosx - 2 = 0 /:2
9cos^2x + 10cosx - 1 = 0
cosx = t
9t^2 + 10t - 1 = 0
D = 100 - 36 = 64
t1 = ( - 10 + 8)/18 = - 2/18 = - 1/9
t2 = ( - 10 - 8)/18 = - 18/18 = - 1
1) cosx = - 1/9
x = ± arccos(-1/9)+ 2pik
x = ± (pi - arccos1/9) + 2pik, k ∈Z
2) cosx = - 1
x = pi + 2pik, k ∈Z