Помогите решить неравенство, пожалуйста, с понятным объяснением. Заранее спасибо ;3

0 голосов
17 просмотров

Помогите решить неравенство, пожалуйста, с понятным объяснением.
Заранее спасибо ;3


image

Алгебра (7.8k баллов) | 17 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

ОДЗ: x^2>0⇔x≠0;
x^2≠1⇔x≠1; x≠ - 1
4x+5>0⇔x> - 5/4;
sin^2 x >0⇔sin x≠0 (sin^4 x>0 дает то же ограничение)⇔ x≠πn, n∈Z;
sin^4 x≠1⇔sin x≠1; sin x≠ - 1⇔x≠ π/2+πn, n∈Z

Воспользовавшись двумя формулами 

log_a b=1/(log_b a)
(если b≠1; про остальные условия: a>0; b> 0; a≠1 я здесь не упоминаю, они предполагаются выполненными, раз написан левай логарифм)       и

log_a^2 b=(1/2)log_|a| b= (1/2)log_a b (последнее  если a>o), приводим неравенство к виду

(1/2)(log_(sin^2 x)(4x+5))/(log_(sin^2 x) x^2)≥1/2,

после чего формула перехода к новому основанию приводит к неравенству

log_(x^2)(4x+5)≥1⇔log_(x^2)(4x+5)≥log_(x^2) (x^2), которое на ОДЗ равносильно неравенству

(x^2-1)(4x+5-x^2)≥0

(в общем виде log_a b≥log_a c⇔ на ОДЗ  (a-1)(b-c)≥0).

Далее: (x-1)(x+1)^2(x-5)≤0, метод интервалов приводит к

x∈{- 1}∪[1;5].

Остается пересечь с ОДЗ.

Ответ: x∈(1;π/2)∪(π/2;π)∪(π;3π/2)∪(3π/2;5]

(64.0k баллов)