0, \ x \in (2 \pi +2 \pi n;3 \pi +2 \pi n) \\sin2x-2cos^2x=0\\
2sinxcosx-2cos^2x=0/:2sin^2x \neq 0\\
tgx-tg^2x=0\\
tgx(1-tgx)=0\\
tgx=0, \ x= \pi k, \ k\in Z \\
tgx=1\\
x= \frac{ \pi }{4} + \pi m, \ m\in Z\\
x\in [2 \pi ; \frac{7 \pi }{2} ]\\
2 \pi \leq \frac{ \pi }{4} + \pi m \leq \frac{7 \pi }{2} /: \pi \\
2 \leq \frac{1}{4}+m \leq \frac{7}{2} /- \frac{1}{4} \\" alt=" \frac{sin2x-2cos^2x}{ \sqrt{sinx} } =0, \ x\in[2 \pi ; \frac{7 \pi }{2} ]\\
sinx \neq 0, \ x \neq \pi n, \ n\in Z\\sinx>0, \ x \in (2 \pi +2 \pi n;3 \pi +2 \pi n) \\sin2x-2cos^2x=0\\
2sinxcosx-2cos^2x=0/:2sin^2x \neq 0\\
tgx-tg^2x=0\\
tgx(1-tgx)=0\\
tgx=0, \ x= \pi k, \ k\in Z \\
tgx=1\\
x= \frac{ \pi }{4} + \pi m, \ m\in Z\\
x\in [2 \pi ; \frac{7 \pi }{2} ]\\
2 \pi \leq \frac{ \pi }{4} + \pi m \leq \frac{7 \pi }{2} /: \pi \\
2 \leq \frac{1}{4}+m \leq \frac{7}{2} /- \frac{1}{4} \\" align="absmiddle" class="latex-formula">
Ответ: x=9п/4